Lecture 2: Markov chains

Last Time	0.1. Stochastic process			(Xt) _{te} I			
	Xt	χ - value	ueck	Random	Variable.		
		discrete					
					$\chi \subseteq \mathbb{R}$, and		
	, ,						
		1/0 15	at mos	t comta	ble.		

0.2. Transition probability:
$$P(X_t = x_t \mid (X_s)_{s \leq t-1} = (x_s)_{s \leq t-1})$$

A Membro chain
$$(Xt)_{t\in I}$$
 is time homogeneous if $P(X_{n+1}=y|X_n=x)=P(X_1=y|X_0=x)$, $\forall n\geq 1$, $\forall x,y\in x$.

$$P_{xy} = P(X_t = y \mid X_{t-1} = x) (= P(X_1 = y \mid X_0 = x))$$

Properties:
$$0$$
, $0 < P_{xy} < 1$, $\forall x, y \in X$.
 2 , $\sum_{y \in X} P_{xy} = 1$, $\forall x \in X$.

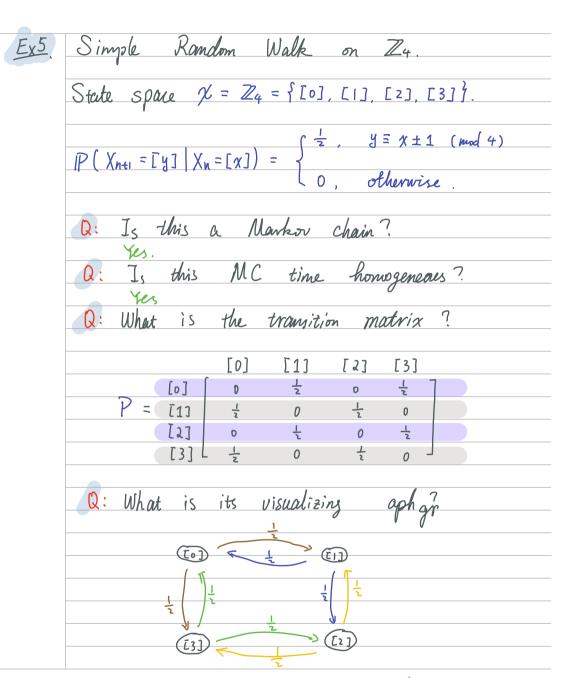
Port 1°.	Visualizing chains/graphs
Ēx1.	
	1 2 3
	1 0.7 0.2 0.1
	P = 2 0.3 0.5 0.2
	3 [0,2 0,4 0.4]
	Visualizing chain:
	VISIMULETAL CHACK.
	0.2
	0.7(200.4
	0.3
	0.7
	0.2
Ex2.	Transition matrix:
	0 1 2 3
	$P = 1 \frac{1}{3} \frac{1}{6} \frac{1}{4} \frac{1}{4}$ $2 \frac{1}{2} 0 \frac{1}{2} 0$
	$\frac{1}{2} \frac{1}{2} 0 \frac{1}{2} 0$
	3 0 0 0 1
	View diame chains
	Visuedizing chain:
	0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
	0 1 02 6 0 2 2 8 1
	7

2°	Multi-Step transition probability				
	Let (Xt)teI be a time homogeneous MC, let				
	P be the transition matrix such that				
	$P_{xy} = P(X_1 = y \mid X_0 = x)$. Define				
	$[P(n, n+m)]_{xy} = P(X_{n+m} = y \mid X_n = x)$				
	be the probability of going from Xn = x to Xnow=3				
	Q: What is the matrix P(n,n+m)?				
	A: For amy $n, m \in \mathbb{N}$, amy $x, y \in X$,				
	$[P(n, n+m)]_{xy}$				
$= \mathbb{P}(X_{n+m} = y \mid X_n = x)$					
	= Z P(Xn+m=y, Xn+m-1=2 Xn=x)				
P(A,B C) = $P(A B,C) \cdot P(B C)$	$= \sum_{z \in x} P(X_{n+m} = y \mid X_{n+m-1} = z, X_n = x) \cdot P(X_{n+m-1} = z \mid X_n = x)$				
Markon Property	= = P (Xn+m=y Xn+m-1=2).P(Xn+m-1=2 Xn=x)				
	$= \sum_{z \in \mathcal{X}} \left[P(n, n+m-1) \right]_{xz}$				

= $[P(n, n+m-1) \cdot P]_{xy}$. This implies Note: [P(n,n+1)]xy $P(n, n+m) = P(n, n+m-1) \cdot P$, $\forall n, m \in \mathbb{N}$. $= \mathbb{P}(X_{n+1} = y \mid X_{n} = x)$ = Pxy, By mathematical induction or applying the above Vnew, x,yex. $\Rightarrow P(n, n+1) = P$ formula recursively, one has ∀n∈N. $P(n, n+m) = P^m$ ∀n, me N. Thm 1. Let (Xt)teI be a time homogeneous Markor chain, then the m-step transition probability P(Xnom = y | Xn = x) is the m-th power of the transition evaluated at the row x and column

EXAMPLES

Ex3. Simple Random Walk on $Z: (X_n)_{n \ge 0}$ Let $X_n = \sum_{i=0}^n Y_i$, where $Y_0 = 0$, and


Let
$$X_n = \sum_{i=0}^n Y_i$$
, where $Y_0 = 0$, and

$$P(Y_t = 1) = P(Y_t = -1) = \frac{1}{2}$$

$$\mathbb{P}(\chi_{n+1} = y \mid \chi_n = \chi) = \begin{cases} \frac{1}{2}, & |y-x| = 1; \\ 0, & \text{else}. \end{cases}$$

		-2	-	0	1	2		
		;	r •			<i>'</i>	٦	
,			,	,	,	1		
-2		0	2	D	0	Э		
-1		-12	0	12	0	0		
P= o	~	O	7	0	1/2	0	· - v	
1		D	0	1-2	0	1	• .,	
2		0	0	0	-	0		
,		•		:	:			
	L	•	•	•	,			

This is the end of this Lecture?